페이지

2018년 7월 10일 화요일

2.1 실제 데이터로 작업하기

머신러닝을 배울 때는 인공적으로 만들어진 데이터셋이 아닌 셀제 데이터로 실험해보는 것이 가장 좋습니다. 다행이 여러 분야에 걸쳐 공개된 데이터셋이 아주 많습니다. 다음 데이터를 구하기 좋은 곳입니다.

- 유명한 공개 데이터 저장소
   - UC 얼바인Irnine 머신러닝 저장소(http://archive.ics.uci.edu/ml/)
   - 캐글Kaggle 데이터셋(http://kaggle.com/datasets)
   - 아마존AWS데이터셋(http://aws.amazon.com/datasets)

- 메타 포털(공개 데이터 저장소가 나열되어 있습니다)
   - http://dataportals.org/
   - http://opendatamonitor.eu/
   - http://quandl.com

- 인기 있는 공개 데이터 저장소가 나열되어 있는 다른 페이지
   - 위키백과 머신러닝 데이터셋 목록(https://goo.gl/SJHN2K)
   - Quora.com 질문(http://goo.gl/zDR78y)
   - 데이터셋 서브레딧subreddit(http://www.reddit.com/r/datasets)

이 장에서는 StatLib 저장소에 있는 캘리포니아 주택 가격Califormia Housing Prices 데이터셋을 사용합니다. 이 데이터셋은 1990년 캘리포니아 인구조사 데이터를 기반으로 합니다. 최근 데이터는 아니지만 학습용으로 아주 좋기 때문에 최근데이터라고 생각하겠습니다. 교육목적으로 사용하기 위해 범주형 특성을 추가하고 몇 개 특성을 제외했습니다.

CHAPTER 2 머신러닝 프로젝트 처음부터 끝까지

이 장에서는 여러분이 부동산 회사에 막 고용된 데이터 과학자라고 가정하고 예제 프로젝트의 처음부터 끝까지 진행해보겠습니다. 진행할 주요 단계는 다음과 같습니다.

1. 큰 그림을 봅니다.
2. 데이터를 구합니다.
3. 데이터로부터 통찰을 얻기 위해 탐색하고 시각화합니다.
4. 머신러닝 알고리즘을 위해 데이터를 준비합니다.
5. 모델을 선택하고 훈련시킵니다.
6. 모델을 상세하게 조정합니다.
7. 솔루션을 제시합니다.
8. 시스템을 론칭하고 모니터링하고 유지 보수합니다.

1.5 테스트와 검증

모델이 새로운 샘플에 얼마나 잘 일반화될지 아는 유일한 방법은 새로운 샘플에 실제로 적용해 보는 것입니다. 이를 위해 실제 서비스에 모델을 넣고 잘 동작하는지 모니터링하는 방법이 있습니다. 이 방법이 괜찮긴 하지만 만약 모델이 아주 나쁘다면 고객이 불만을 토로할 테니 좋은 생각이 아닙니다.

더 나은 방법은 훈련 데이터를 훈련세트와 데스트 세트 두개로 나누는 것입니다. 이름에서도 알 수 있듯이 훈련 세트를 사용해 모델을 훈련시키고 테스트 세트를 사용해 모델을 테스트합니다. 새로운 샘플에 대한 오류 비율을 일반환 오차generalization error(또는 외부 샘플오차out-of-sample error)라고 하며, 테스트 세트에서 모델을 평가함으로써 이 오차에 대한 추정값estimation을 얻습니다. 이 값은 이전에 본 적이 없는 새로운 샘플에 모델이 얼마나 잘 작도할지 알려줍니다.
훈련 오차가 낮지만(즉, 훈련 세트에서 모델의 오차가 적음) 일반화 오차가 높다면 이는 모델이 훈련 데이터에 과대적합되었다는 뜻입니다.

TIP 보통 데이터의 80%를 훈련에 사용하고 20%는 데트트용으로 떠어놓습니다.

모델 평가는 아주 간단합니다. 그냥 테스트 세트를 사용하면 됩니다. 두 모델(선형 모델과 다항 모델)중 어떤 것을 선택할지 갈등하고 있다고 합시다. 어떻게 결정할 수 있을까요? 두 모델 모두 훈련 세트로 훈련시키고 테스트 세트를 사용해 얼마나 잘 일반화되는지 비교해보면 됩니다.

이제 선형 모델이 더 잘 일반화되었다고 가정하고 과대적합을 피하기 위해 규제를 적용하려고 합니다. 이때 하이퍼파라미터 값을 어떻게 선택할까요? 100개의 하이퍼파라미터 값으로 1000개의 다른 모델을 훈련시키는 방법이 있습니다. 일반화 오차가 가장 낮은 모델(5%라고 합시다)을 만드는 최적의 하이퍼파라미터를 찾았다고 가정합시다.

이제 이 모델을 실제 서비스에 투입합니다. 하지만 성능이 예상만큼 좋지 않고 오차를 15%나 만듭니다. 왜 그럴까요?

일반화 오차를 테스트 세트에서 여러 번 측정했으므로 모델과 하이퍼파라미터가 테스트세트에 최적화된 모델을 만들었기 때문입니다. 이는 모델이 새로운 데이터에 잘 작동하지 않을 수 있다는 뜻입니다.

이 문제에 대한 일반적인 해결 방법은 검증 세트validation set라 부르는 두 번째 홀드아웃holdout세트를 만드는 것입니다. 훈련 세트를 사용해 다양한 하이퍼파라미터로 여러 모델을 훈련시키고 검증 세트에서 최상의 성능을 내는 모델과 하이퍼파라미터를 선택합니다. 만족스러운 모델을 찾으면 일반화 오차의 추정값을 얻기 위해 테스트 세트로 단 한번의 최종 테스트를 합니다.

훈련 데이터에서 검증 세트로 너무 많은 양의 데이터를 뺏기지 않기 위해 일반적으로 교차 검증cross-validation 기법을 사용합니다. 훈련 세트르 여러 서브셋subset으로 나누고 각 모델을 이 서브셋의 조합으로 후련시키고 나머지 부분으로 검증합니다. 모델과 하이퍼파라미터가 선택되면 전체 훈련 데이터를 사용하여 선택한 하이퍼파라미터로 최종 모델을 훈련시키고 테스트 세트에서 일반화 오차를 측정합니다.

공짜 점심 없음 이론
모델은 관측한 것을 감소화한 것입니다. 간소화의 의미는 새로운 샘플에 일반적이지 않을 것 같은 불필요한 세부사항을 제거하는 것입니다. 그러나 어떤 데이터를 버리고 어떤 데이터를 남길지 정하기 위해 가정을 해야 합니다. 예를 들어 선형 모델은 데이터가 근본적으로 선형이고 샘플과 직선 사이의 거리는 무시할 수 있는 잡음이라고 가정합니다.

1996년에 발효한 유명한 논문에서 데이비드 월퍼트David Wolperts는 데이터에 관해 완벽하게 어떤 가정도 하지 않으면 한 모델을 다른 모델보다 선호할 근거가 없음을 보였습니다. 이를 공짜 점심 없음No Free Lunch(NFL) 이론이라 합니다. 어떤 데이터셋에서는 선형 모델이 가장 잘 들어잠지만 다른 데이터셋에서는 신경망이 잘 들어맞습니다. 경험하기 전에 더 잘 맞을 거라고 보장할 수 있는 모델은 없습니다(이 이론의이름이 유래된 이유입니다). 어떤 모델이 최선인지 확실히 아는 유일한 방법은 모든 모델을 평가해보는 것뿐입니다. 이것이 불가능하기 때문에 실정에서는 데이터에 관해 타당한 가정을 하고 적절한 모델 몇 가지만 평가합니다. 예를 들어 간단한 작업에서는 규제의 수준이 다양한 선형 모델을 평가하고, 복잡한 문제라면 여러 가지 신경망을 평가합니다.




1.4 머신러닝의 주요 도전 과제

간단하게 말해 우리의 주요 작업은 학습 알고리즘을 선택해서 어떤 데이터에 훈련시키는 것이므로 문제가 될 수 있는 두 가지 '나쁜 알고리즘'과 '나쁜 데이터'입니다. 이 절에서는 이 두가지에 대해 알아봅니다. 나쁜 데이터의 사례부터 알아보겠습니다.

1.4.1 충분하지 않은 양의 훈련 데이터
어린아이에게 사과에 대해 알려주려면 사과를 가리키면서 '사과'라고 말하기만 하면 됩니다(아마도 이 과정을 여러 번 반복해야 합니다). 그러면 아이는 색깔과 모야이 달라도 모든 종류의 사과를 구분할 수 있습니다. 정말 똑똑하지요.

머신러닝은 아직 이렇게까지는 못합니다. 대부분의 머신러닝 알고리즘이 잘 작동하려면 데이터가 많아야 합니다. 아주 간단한 문제에서조차도 수천 개의 데이터가 필요하고 이미지나 음성 인식 같은 복잡한 문제라면 수백만 개가 필요할지도 모릅니다(이미 만들어진 모델을 재사용할 수 없다면 말이죠).

믿을 수 없는 데이터의 효과
2001년에 발표한 유명한 노문에서 마이크로소프트 연구자인 미셀 반코와 에릭 브릴은 아주 간단한 모델을 포함하여 여러 다른 머신러닝 알고리즘에 충분한 데이터가 주어지면 복잡한  자연어 중의성 해소 문제를 거의 비슷하게 잘 처리한다는 것을 보였습니다.

이 논문의 저자들이 말한 것처럼 '이 결과가 제시하는 것은 시간과 돈을 알고리즘 개발에 쓰는것과 말뭉치 개발에 쓰는것 사이트 트레이드오프에 대해 다시 생각해봐야 한다는 것입니다.'

복잡한 문제에서 알고리즘보다 데이터가 더 중요하다는 이 생각은 2009년에 피터 노르빅등이 쓴 'The Unreasonable Effectiveness of Data'논문 때문에 더 유명해졌습니다. 하지만 기억할 점은 작거나 중간 규모의 데이터셋이 여전히 매우 흔하고, 훈련 데이터를 추가로 모으는 것이 항상 쉽거나 저렴한 일은 아니므로, 아직은 알고리즘을 무시하지 말아야 한다는 것입니다.

1.4.2 대표성 없는 훈련 데이터
일반화가 잘되려면 우리가 일반화하기 원하는 새로운 사례를 훈련 데이터가 잘 대표하는 것이 중요합니다. 이는 사례 기반 학습이나 모델 기반 학습 모두 마찬가지입니다.

예를 들어 앞서선형 모델을 훈련시키기 위해 사용한 나라의 집합에는 일부 나라가 빠져있어 대표성이 완벽하지 못합니다. 누락된 나라를 추가했을때 데이터가 어떻게 나타나는지 보여줍니다.

이 데이터에 선형 모델을 훈련시키면 실선으로 된 모델을 얻습니다. 반면 이전 모델은 점선으로 나타나 있습니다. 그림에서 알 수 있듯이 누락된 나라를 추가하면 모델이 크게 변경될 뿐만 아니라 이런 간단한 선형 모델은 잘 작도하지 않는다는 걸 확실히 보여줍니다. 매우 부유한 나라가 중간 정도의 나라보다 행복하지 않고, 반대로 일부 가나한 나라가 부유한 나라보다 행복한 것 같습니다.

대표성 없는 훈련 데이터를 사용했으므로 정확한 예측을 하지 못하는, 특히 매우 가난하거나 부유한 나라에서 잘못 예측하는 모델을 훈련시켰습니다.

일반화하려는 사례들을 대표하는 훈련 세트를 사용하는 것이 매우 중요하지만, 이게 생각보다 어려울 때가 많습니다. 샘플이 작으면 샘플링 잡음sampling noise(즉, 우연에 의한 대표성 없는 데이터)이 생기고, 매우 큰 샘플도 표본 추출 방법이 잘못되면 대표성을 띠지 못할 수 있습니다. 이를 샘플링 편향sampling bias이라고 합니다.

유명한 샘플링 편향 사례
아마도 샘플링 편향에 대한 가장 유명한 사례는 랜던과 루즈벨트가 경쟁했던 1936년 미국 대통령 선거에서 Literary Digest잡지사가 천만 명에게 우편물을 보내 수행한 대규모 여론조사일 것입니다. 240만 명의 응답을 받았고 랜던이 선거에서 57% 득표를 얻을 것이라고 높은 신뢰도로 예측했습니다.

하지만 루즈벨트가 62% 득표로 당선되었습니다. 문제는 Literary Digest의 샘플링 방법에 있었습니다.

- 첫째, 여론조사용 주소를 얻기 위해 전화번호부, 자사의 구독자 명부, 클럽 회원 명부등을 사용했습니다. 이런 명부는 모두 공화당(따라서 랜던)에 투표할 가능성이 높은 부유한 계층에 편중된 경향이 있습니다.

- 둘째, 우편물 수신자 중 25%미만의 사람이 응답했습니다. 이른 정치에 관심 없는 사람, Literary Digest를 싫어하느 사람과 다른 중요한 그룹을 제외시킴으로써 역시 표본을 편형되게 만들었습니다. 특히 이러한 종류의 샘플링 편향을 비응답 편향nonresponse bias이라고 합니다.

다른 예로 펑크 음악 비디올르 분휴하는 시스템을 만든다고 가정합시다. 이를 위한 훈련 세트를 유투브에서 '펑크 음악'을 검색해 마련할 수 있습니다. 하지만 이는 유투브 검색 엔진이 결괏값으로 유투브 내의 모든 펑크 음알그 대표하는 동영상을 반환한다는 가정하는 것입니다. 현실에서는 검색 결과가 인기 음악가들로 편중될 가능성이 큽니다. 그렇다면 어떻게 대량의 훈련 세트를 구할 수 있을까요?

1.4.3 낮은 품질의 데이터
훈련 데이터가 에러, 이상치outlier, 잡음(예를 들면 성능이 낮은 측정 장치 때문에)으로 가득하다면 머신러닝 시스템이 내재된 패턴을 찾기 어려워 잘 작동하지 않을 것입니다. 그렇기 때문에 훈련 데이터 정제에 시간을 투자할 만한 가치는 충분합니다. 사실 대부분의 데이터 과학자가 데이터 정제에 많은 시간을 쓰고 있습니다. 예를 들어보겠습니다.

- 일부 샘플이 이상치라는 게 명학하면 그것히 그긋들을 무시하거나 수종으로 잘못된 것을 고치는 것이 좋습니다.
- 일부 샘플에 특성 몇 개가 빠져있다면(예를 들면 고객 중 5%가 나이를 기록하지 않음), 이 특성을 모두 무시할지, 이 샘플을 무시할지, 빠진 값을 채울지(예를 들면 평균 나이로), 또는 이 특성을 넣은 모델과 제외한 모델을 따로 훈련시킬 것인지 등을 정해야 합니다.

1.4.4 관련 없는 특성
속담에도 있듯이 엉터리가 들어가면 엉터리가 나옵니다garbage in, garbage out. 훈련 데이터에 관련없는 특성이 적고 관련 있는 특성이 충분해야 시스템이 학습할 수 있을 것입니다. 성공적인 머신러닝 프로젝트의 핵심 요소는 훈련에 사용할 좋은 특성들을 찾는 것 입니다. 이 과정을 특성공학feature engineering이라 하며 다음 작업을 포함합니다.

- 특성 선택feature selection: 가지고 있는 특성 중에서 훈련에 가장 유용한 특성을 선택합니다.
- 특성 추출(feature extraction): 특성을 결합하여 더 유용한 특성을 만듭니다(앞서 본 것처럼 차원 축소 알고리즘을 사용할 수 있습니다.)
- 새로운 데이터를 수집해 새 특성을 만듭니다.

지금까지 나쁜 데이터의 사례를 살펴보았고 이제 나쁜 알고리즘의 예를 몇 가지 살펴보겠습니다.

1.4.5 훈련 데이터 과대적합
해외여행 중 택시운전사가 내 물건을 후쳤다고 가정합시다. 아마도 그 나라의 모든 택시운전사를 도둑이라고 생각할 수도 있습니다. 사람은 종종 과도하게 일반화를 하지만 주의하지 않으면 기계도 똑같은 함정에 빠질 수 있습니다. 머신러닝에서는 이를 과대적합(overfitting)이라고 합니다. 이는 모델이 훈현 데이터에 너무 잘 맞지만 일반성이 떨어진다는 뜻입니다.

[그림 1-22]는 고차원의 다항 회귀 모델이 삶의 만족도 훈련 데이터에 크게 과대적합된 사례를 보여줍니다. 간단한 선형 모델보다 이 모델이 훈련 데이터에 더 잘 맞는다라도 실제로 이 예측을 믿기는 힘든니다.

심층 신경망 같은 복잡한 모델은 데이터에서 미묘한 패턴을 감지할 수 있지만, 훈련 세트에 잡음이 많거나 데이터셋이 너무 작으면(샘플링 잡음이 발생하므로) 잡음이 섞인 패턴을 감지하게 됩니다. 당연히 이런 패턴은 새로운 샘플에 일반화되지 못합니다. 예를 들어 삶의 만족도 모델에 나라 이름 같은 관련 없는 특성을 많이 추가한다고 합시다. 이 경우 복잡한 모델이 이름에 'w'가 들어간 나라들의 삶의 만족도가 7보다 크다는 패턴을 감지할지 모릅니다. 뉴질랜드New Zealand(7.3), 노르웨이Norway(7.4), 스웨덴Sweden(7.2), 스위스Switzerland(7.5)가 여기에 속합니다. 이 W-만족도 규칙을 르완다Rewanda나 잠바브웨Zimbabwe에 일반화하면 얼마나 신뢰할 수 있을까요? 확실히 이 패턴은 우연히 훈련 데이터에서 찾은 것이지만 이 패턴이 진짜인지 잡음데이터로 인한 것인지 모델이 구분해낼 방법은 없습니다.

CAUTION_ 과대적합은 훈련 데이터에 있는 잡음의 양에 비해 모델이 너무 복잡할 때 일어납니다. 해결 방법은 다음과 같습니다.
- 파라미터 수가 적은 모델을 선택하거나(예를 들면 고차원 다항 모델보다 선형 모델), 훈련 데이터에 있는 특성 수를 줄이거나, 모델에 제약을 가하여 단순화시킵니다.
- 훈련 데이터를 더 많이 모읍니다.
- 훈련 데이터의 잡음을 줄입니다(예를 들면 오류 데이터 수정과 이상치 제거).

모델을 단순하게 하고 과대적합의 위험을 감소시키기 위해 모델에 제약을 가하는 것을 규제regularization라고 합니다. 예를 들어 앞서 만든 선형 모델은 두 개의 파라미터 @0과 @1을 가지고 있습니다. 이는 훈련 데이터에 모델을 맞추기 위한 두 개의 자유도degree of freedom를 학습 할고리즘에 부여합니다. 모델은 직석읜 절편(@0)과 기울기(@1)를 조절할 수 있습니다. 우리가 @1=0이 되도록 강제하면 알고리즘에 한 개의 자유도만 남게 되고 데이터에 적절하게 맞춰지기 힘들것 입니다. 즉, 할 수 있는 것이 훈련 데이터에 가능한 한 가깝게 되도록 직선을 올리거나 내리는 것이 전부이므로 결국 평균 근거가 됩니다. 진짜 아주 간단한 모델이네요! 알고리즘 @1을 수정하도록 허락되는 작은 값을 유지시키면 학습 알고리즘이 자유도 1과 2 사이의 적절한 어딘가에 위치할 것입니다. 이 자유도 2인 모델보다는 단순하고 자유도 1인 모델보다는 복잡한 모델을 만듭니다. 데이터에 왁변히 맞추는 것과 일반화를 위해 단순한 모델을 유지하는 것 사이의 올바른 균형을 찾는것이 좋습니다.

[그림 1-23]에 세 가지 모델이 있습니다. 점선은 나라 몇 개가 빠진 채로 훈련한 모델이고 파선은 모든 나라를 포함시켜 훈련한 두 번째 모델이며 실선은 첫 번째 모델과 같은 데이터에 규제를 적용해 만든 선형 모델입니다. 규제가 모델의 기울기를 더 작게 만들어 훈련 데이터에는 덜 맞지만 새로운 샘플에는 더 잘 일반화됩니다.

학습하는 동안 적용할 규제의 양은 하이퍼파라미터hyperparameter가 결정합니다. 하이퍼파라미터는 (모델이 아니라) 학습 알고리즘의 파라미터입니다. 그래서 학습 알고리즘으로부터 영향을 받지 않으며, 훈련 전에 미리 지정되고, 훈련하는 동안에는 상수로 남아 있습니다. 규제 하이퍼 파라미터를 매운 큰 값으로 지정하면 (기울기가 0에 가까운) 거의 평면한 모델을 얻게 됩니다. 그러면 학습 알고리즘이 훈련 데이터에 과대적합될 가능성은 거의 없겠지만 좋은 모델을 찾지 못합니다. 머신러닝 시스템을 구축할 때 하이퍼파라미터 튜닝은 매우 중요한 과정입니다(다음 장에서 자세한 예를 보겠습니다).

1.4.6 훈련 데이터 과소적합
이미 짐작했겠지만 과소적합underfitting은 과대적합의 반대입니다. 이는 모델이 너무 단순해서 데이터의 내재된 구조를 학습하지 못할 때 일어납니다. 옐르 들어 삶의 만족도에 대한 선형 모델은 과소적합되기 쉽습니다. 현실은 이 모델보다 더 복잡하므로 훈련 샘플에서조차도 부정확한 예측을 만들 것입니다.

이 문제를 해결하는 주요 기법은 다음과 같습니다.
- 파라미터가 더 많은 강력한 모델을 선택합니다.
- 학습 알고리즘에 더 좋은 특성을 제고합니다(특성 엔지니어링).
- 모델의 제약을 줄입니다(예를 들면 규제 하이퍼라라미터를 감소시킵니다).

1.4.7 한걸음 물러서서
지금까지 여러분은 벌써 머신러닝에 관해 많은 것을 배웠습니다. 그러나 많은 개념을 한꺼번에 다루다 보니 정리가 제대로 되지 않았을 것입니다. 한걸음 물러서서 큰 그림을 보겠습니다.

- 머신러닝은 명시적인 규칙을 코딩하지 않고 기계가 데이터로부터 학습하여 어떤 작업을 더 잘하도록 만드는 것입니다.
- 여러 종륭의 머신러닝 시스템이 있습니다. 지도 학습과 비지도 학습, 배치 학습과 오라인 학습, 사례 기간 학습과 모델 기반 학습 등입니다.
- 머신러닝 프로젝트에서는 훈련 세트에 데이터를 모아 학습 알고리즘에 주입합니다. 학습 알고리즘이 모델 기반이면 훈련 세트에 모델을 맞추기 위해 파라미터를 조정하고(즉, 훈련 세트에서 좋은 예측을 만들기 위해). 새로운 데이터에서도 좋은 예측을 만들거라 기대합니다. 알고리즘이 사례 기반이면 샘플을 기억하는 것이 학습이고 새오룬 샘플에 일반화하기 위해 유사도 측정을 사용합니다.
- 훈련 세트가 너무 작거나, 대표성이 없는 데이터이거나, 잡음이 많고 관련 없는 특성으로 오염되어 있다면 시스템이 잘 작동하지 않습니다(엉터리가 들어가면 엉터리가 나옵니다). 마지막으로, 모델이 너무 단순하거나(과소적합된 경우) 너무 복잡하지 않아야 합니다(과대적합된 경우).

마지막으로 다루어야 할 중요한 주제가 하나 있습니다. 모델을 학습시켰다 해서 새로운 샘플에 일반화되길 그냥 바라기만 해서는 안 됩니다. 모델을 평가하고 필요하면 상세하게 튜닝해야 합니다. 어떻게 하는지 살펴보겠습니다.








2018년 7월 4일 수요일

1.3 머신러닝 시스템의 종류

머신러닝 시스템의 종류는 굉장히 많으므로 다음을 기준으로 넓은 범주에서 분류하면 도움이 됩니다.

- 사람이 감독 하에 훈련하는 거신지 그렇지 않은 것인지(지도, 비지도, 준지도, 강화 학습)
- 실시간으로 점진적인 학습을 하는지 아닌지(온라인 학습과 배치학습)
- 단순하게 알고 있는 데이터 포인트와 새 데이터 포인트를 비교하는 것인지 아니면 훈련 데이터셋에서 과학자들처럼 패턴을 발견하여 예측 모델을 만드는지(사례 기반 학습과 모델 기반 학습)

이 범주들은 서로 배타적이지 않으며 원하는 대로 연결할 수 있습니다. 예를 들어 최첨단 스팸 필터가 심층 신경망 모델을 사용해 스팸과 스팸이 아닌 페일로부터 실시간으로 학습할 지도 모릅니다. 그렇다면 이 스스템은 온라인이고 모델 기반이며 지도 학습 시스템입니다.

이 범주들을 조금 더 차세히 들여다보겠습니다.

1.3.1 지도 학습과 비지도 학습
머신러닝 시스템을 '학습하는 동안의 감독 형태나 정보량'에 따라 분류할 수 있습니다. 지도 학습, 비지도 학습, 준지도 학습, 강화 학습 등 네 가지 주요 범주가 있습니다.

지도학습
지도 학습supervised learning에는 알고리즘에 주입하는 훈련 데이터에 레이블label이라는 원하는 답이 포함됩니다.

분류classification가 전형적인 지도 학습 작업이며, 스팸 필터가 좋은 예입니다. 스팸 필터는 많은 메일 샘플과 소속 정보(스팸인지 아닌지)로 훈련되어야 하며 어떻게 새 메일을 분류할지 학습해야 합니다.

또 다른 전형적인 작업은 예측 변수predictor variable라 부르는 특성feature(주행거리, 연식, 브랜드 등)을 사용해 중고차 가격 같은 타긱 수치를 예측하는 것입니다. 이런 종류의 작업을 휘귀regression라고 부릅니다. 시스템을 훈련시키려면 예측 변수와 레이블(중고차 가격)이 포함된 중고차 데이터가 많이 필요합니다.

NOTE 머신러닝에서 속성(attribute)은 데이터 타입(예를 들면 주행거리)을 말합니다. 특성은 문맥에 따라 여러 의미를 갖지만 일반적으로 속성과 값이 합쳐진 것을 의미합니다.(예를 들면 주행거리=15,000). 하지만 많은 사람이 속성과 특성을 구분하지 않고 사용합니다.

일부 희귀 알고리즘은 분류에 사용할 수도 있고 또 반대의 경우도 있습니다. 옐르 들어 분류에 널리 쓰이는 로지스틱 희귀는 클래스에 속할 확률을 출력합니다(예를 들면 스팸일 가능성 20%).

다음은 가장 중요한 지도 학습 알고리즘들입니다
- k-최근접 이웃k-Nearest Neighbors
- 선형 희귀(Linear Regression)
- 로지스틱 희귀(Logistic Regression)
- 서포트 벡터 머신(Support Vector Machines SVM)
- 결정트리(Decision Tree)와 랜덤 포레스트(Random Forests)
- 신경망(Neural networks)

비지도 학습
비지도 학습(unsupervised learning)에는 말 그대로 훈련 데이터에 레이블이 없습니다. 시스템이 아무런 도움 없이 학습해야 합니다.

다음은 가장 중요한 비지도 학습 알고리즘 입니다.
- 군집(Clustering)
   - k-평균(k-Means)
   - 계층 군집 분석(Hierarchical Cluster Analysis. HCA)
   - 기댓값 최대화(Expectaion Maximization)
- 시각화(visualization)와 차원 축소(dimensionality reduction)
   - 주성분 분석(Principal Component Analysis. PCA)
   - 커널(kernel)PCA
   - 지역적 선형 임베딩(Locally-Linear Embedding. LLE)
   - t-SNE (t-distributed Stochastic Neighbor Embedding)
- 연관 규칙 학습(Association rule learning)
   - 어프라이어리(Apriori)
   - 이클렛(Eclat)

예를 들어 블로그 방문자에 대한 데이터가 많이 있다고 합시다. 비슷한 방문자들을 그룹으로 묶기 위해 군집 알고리즘을 적용하려 합니다. 하지만 방문자가 어떤 그룹에 속하는지 알고리즘에 알려줄 수 있는 데이터 포이트가 없습니다. 그래서 알고리즘이 스스로 방문자 사이의 연결고리를 찾습니다. 예를 들어 40%의 방문자가 만화책을 좋아하며 저녁때 블로그 글을 읽는 남성이, 20%는 주말에 방문하는 공상 과학을 좋아하는 젋은 사람임을 알게 될지도 모릅니다. 계층 군집(hierachical clustering)알고리즘을 사용하면 각 그룹을 더 작은 그룹으로 세분화할 수 있습니다. 그러면 각 그룹에 맞춰 블로그에 글을 쓰는데 도움이 될 것입니다.

시각화(visualization)알고리즘도 비지도 학습 알고리즘의 좋은 예입니다. 레이블이 없는 대규모의 데이터를 넣으면 도식화가 가능한 2D나 3D 표현을 만들어 줍니다. 이런 알고리즘은 가능한 한 구조를 그대로 유지하려 하므로(예를 들어 입력 공간에서 떨어져 있던 클러스트(cluster)는 시각화된 그래프에서 겹쳐지지 않게 유지됩니다) 데이터가 어떻게 조직되어 있는지 이해할 수 있고 예상하지 못한 패턴을 발견할 수도 있습니다.

비슷한 작업으로는 너무 많은 정보를잃지 않으면서 데이터를 간소화하려는 차원 축소(dimensionlity reduction)가 있습니다. 이렇게 하는 한가지 방법은 상관관계가 있는 여러 특성을 하나로 합치는 것입니다. 예를 들어 차의 주행거리가 연식과 매우 연관되어 있으므로 차원 축소 알고리즘으로 두 특성을 차의 마모 정도를 나타내는 하나의 특성으로 합칠 수 있습니다. 이를 특성 추출(feature extraction)이라고 합니다.

TIP (지도 학습 알고리즘 같은) 머신러닝 알고리즘에 데이터를 주입하기 전에 차원 축소 알고리즘을 사용하여 훈련 데이터의 차원을 줄이는 것이 유용할 때가 많습니다. 살행 속도가 훨씬 빨라지고 디스크와 메모리를 차지하는 공간도 줄고 경우에 따라 성능이 좋아지기도 합니다.

또 하나의 중요한 비지도 학습은 이상치 탐지(anomaly detection)입니다. 예를 들어 부정 거래를 막기 위해 이상한 신용카드 거래를 감지하고, 제조 결함을 잡아내고, 학습 알고리즘에 주입하기전에 데이터셋에서 이상한 값을 자동으로 제거하는 것 등입니다. 시스템은 정상 샘플로 훈련되고, 새로운 샘플이 정상 데이터인지 혹은 이상치인지 판단합니다.

널리 사용되는 또 다른 비지도 학습은 대량의 데이터에서 특성 간의 흥미로운 관계를 찾는 연관 규칙 학습(association rule learning)입니다. 예를 들어 여러분의 슈퍼마켓을 운영한다고 가정합시다. 판매 기록에 연관 규칙을 적용하면 바비규 소스와 감자를 구매한 사람이 스테이크도 구매하는 경향이 있다는 것을 찾을지도 모릅니다.

준지도 학습
어떤 알고리즘은 레이블이 일부만 있는 데이터도 다룰 수 있습니다. 보통은 레이블이 없는 데이터가 많고 레이블이 있는 데이터는 아주 조금입니다. 이를 준지도 학습(semisupervised learning)이라고 합니다.

구글 포토 호스팅 서비스가 좋은 예입니다. 이 서비스에 가족 사진을 모두 올리면 사람 A는 사진1, 5, 11에 있고, 사람 B는 사진 2, 5, 7에 있다고 자동으로 인식합니다. 이는 비지도학습(군집)입니다. 이제 시스템에 필요한 것은 이 사람들이 누구인가 하는 정보입니다. 사람마다 레이블이 하나씩만 주어지면 사진에 있는 모든 사람의 이름을 알 수 있고, 편리하게 사진을 찾을 수 있습니다.
대부분의 준지도 학습 알고리즘은 지도 학습과 비지도 학습의 조합으로 이루어져 있습니다. 예를 들어 심층 신뢰 신경망 deep belief network (DBN)은 여러 겹으로 쌓은 제한된 볼츠만머신 restricted Bolzmann machine(RBM)이라 불리는 비지도 학습에 기초합니다. RBM이 비지도 학습 장식으로 순차적으로 훈련된 다음 전체 시스템이 지도 학습 방식으로 세밀하게 조정됩니다.

강화 학습
강화 학습(Reinforcement learning)은 매우 다른 종류의 알고리즘입니다. 여기서느 학습하는 시스템을 에이전트라고 부르며 환경environment을 관찰해서 해동action을 실행하고 그 결과로 보상reward(또는 부정적인 보상에 해당하는 벌점 penalty)을 받습니다. 시간이 지나면서 가장 큰 보상을 얻기 위해 정책policy이라고 부르는 최상의 전략을 스스로 학습합니다. 정책은 주어진 상황에서 에이전트가 어떤 해동을 선택 할지 정의합니다.

예를 들어 보행 로봇을 만들기 위해 강화학습 알고리즘을 많이 사용합니다. 딥마인드DeepMind의 알파고AlphaGo프로그램도 강화 학습의 좋은 예입니다. 2017년 5월 바둑 세계챔피언인 커제선수를 이겨서 신문의 헤드라인을 장식했습니다. 알파고는 수백만 개으이 게임을 분석해서 승리에 대한 전략을 학습했으며 자기 자신과 많은 게임을 했습니다. 알파고가 세계챔피언과 게임할 때는 학습 기능을 끄고 그동한 학습했던 전략을 적용한 것입니다.

1.3.2 배치 학습과 온라인 학습
머신러닝 시스템을 분류하는 데 사용하는 다른 기준은 입력 데이터의 스트림stream으로 부터 점진적으로 학습하 수 있는지 여부입니다.

배치 학습
배치 학습(batch learning)에서는 시스템의 점진적으로 학습할 수 없습니다. 가용한 데이터를 모두 사용해 훈련시켜야 합니다. 일반적으로 이 방식은 시간과 자원을 많이 소모하므로 보통 오프라인에서 수행됩니다. 먼저 시스템을 훈련시키고 그 다음 제품 시스템에 적용하면 더 이상의 학습없이 실행 됩니다. 즉, 학습한 것을 단지 적용만 합니다. 이를 오프라인 학습offline learning이라고 합니다.

배치 학습 시스템이 (새로운 종류의 스팸 같은) 새로운 데이터에 대해 학습하려면(새로운 데이터뿐만 아니라 이전 데이터도 포함한) 전체 데이터를 사용하여 시스템의 새로운 버전을 첨부터 다시 훈련해야 합니다. 그런 다음 이전 시스템을 중지시키고 새시스템으로 교체합니다.

다행이 머신러닝 시스템을 훈련, 평가, 론칭하는 전체 과정이 쉽게 자동화 될 수 있어서 배치 학습 시스템도 변화에 적응할 수 있습니다. 데이터를 업데이트하고 시스템의 새 버전을 필요한 만큼 자주 훈련시키면 됩니다.

이런 방식이 간단하고 잘 작동하지만 전체 데이터셋을 사용해 훈련하는데 몇 시간이 소요될 수 있습니다. 보통 24시간마다 또느 매주 시스템을 훈련시킵니다. 시스템이 빠르게 변하는데이터에 적응해야 한다면(예를 들면 주식가격)더 능동적인 방법이 필요합니다.
또한 전체 데이터셋을 사용해 훈련한다면 많은 컴퓨팅 장원이 필요합니다(CPU, 메모리 공간, 디스크 공간, 디스크IO, 네트워크IO 등). 대량의 데이터를 가지고 있는데 매일 처음부터 새로 훈련시키도록 시스템을 자동화한다면 큰 비용이 발생할 것입니다. 데이터 양이 아주 많으면 배치 학습 알고리즘을 사용하는게 불가능할 수도 있습니다.

마지막으로, 자원이 제한된 시스템(예를 들면 스마트폰 또는 화상 탐사 로버rover)이 스스로 학습해야 할 때 많은 양의 훈련 데이터를 나르고 학습을 위해 매일 몇 시간씩 많은 자원을 사용하면 심각한 문제를 일으킵니다.

이런 경우에는 점진적으로 학습할 수 있는 알고리즘을 사용하는 편이 낫습니다.

온라인 학습
온라인 학습online learning에서는 데이터를 순차적으로 한 개씩 또는 미니배치mini-batch라 부르는 작은 단위로 주입하여 시스템을 훈련시킵니다. 매 학습 단계가 빠르고 비용이 적게 들어 시스템은 데이터가 도착하는 대로 즉시 학습할 수 있습니다.

온라인 학습은 연속적으로 데이터를 받고 빠른 변화에 스스로 적응해야 하는 시스템에 적합합니다. 컴퓨팅 자원이 제한된 경우에도 좋은 선택입니다. 온라인 학습 시스템이 새로운 데이터 샘플을 학습하면 학습이 끝난 데이터는 더 이상 필요하지 않으므로 버리면 됩니다. 이렇게 되면 많은 공간을 절약할 수 있습니다.

컴퓨터 한 대의 메인 메모리에 들어갈 수 없는 아주 큰 데이터셋을 학습하는 시스템에도 온라인 학습 알고리즘을 사용할 수 있습니다.(이를 외부 메모리out-of-core 학습이라고 합니다). 알고리즘이 데이터 일부를 읽어 들이고 훈련 단계를 수행합니다. 전체 데이터가 모두 적용될 때까지 이 과정을 반복합니다.

CAUTION 이 경우 전체 프로세스는 보통 오프라인으로 실행됩니다(즉, 실시간 시스템에서 수행되는 것이 아닙니다). 그래서 온라인 학습 이라 이름이 혼란을 줄 수 있습니다. 점진적 학습incremental learning이라고 생각하세요.

온라인 학습 시스템에서 중요한 파라미터 하나는 변화하는 데이터에 얼마나 빠르게 적응할 것인지 입니다. 이를 학습률learning rate이라고 합니다. 학습률을 높게 하면 시스템이 데이터에 빠르게 적응하지만 예전 데이터를 금방 잊어버릴 것입니다(최근에 나타난 스팸의 종류만 걸러낼 수 있는 스팸 필터를 원할 리는 없습니다). 반대로 학습률이 낮으면 시스템의 관성이 더 커져서 더 느리게 학습됩니다. 하지만 새로운 데이터에 있는 잡음이나 대표성 없는 데이터 포인트에 덜 민감해집니다.

온라인 학습에서 가장 큰 문제점은 시스템에 나쁜 데이터가 주입되었을 때 시스템 성능이 점진적으로 감소한다는 점입니다. 운영 중인 시스템이라면 고객이 눈치챌지 모릅니다. 예를 들어 로봇의 오작동 센서로부터, 혹은 검색 엔진을 속여 검색 결과 상위에 노출시키려는 누군가로부터 나쁜 데이터가 올 수 있습니다. 이런 위험을 줄이려면 시스템을 면밀히 모니터링하고 성능 감소가 감지되면 즉각 학습을 중지시켜야 합니다(가능하면 이전 운영 상태로 되돌립니다). 입력 데이터를 모니터링해서 비정상 데이터를 잡아낼 수도 있습니다(예를 들면 이상치 탐지 알고리즘을 사용해서).

1.3.3 사례 기반 학습과 모델 기반 학습
머신러닝 시스템은 어떻게 일반화되는가에 따라 분류할 수도 있습니다. 대부분의 머신러닝 작업은 예측을 만드는 것입니다. 이 말은 주어진 훈련 데이터로 학습하지만 훈련 데이터에서는 본적 없는 새로운 데이터로 일반화되어야 한다는 뜻입니다. 훈련 데이터에서 놀은 성능을 내를 것이 좋지만 그게 전부는 아닙니다. 진짜 목표는 새로운 샘플에 잘 작동하는 모델입니다.
일반화를 위한 두 가지 접근법은 사례 기반 학습과 모델 기반 학습입니다.

사례 기반 학습
아마도 가장 간단한 형태의 학습은 단순히 기억하는 것입니다. 스팸 필터를 이러한 방식으로 만들면 사용자가 스팸이라고 지정한 메일과 동일한 모든 메일을 스팸으로 분류합니다. 최악의 방법은 아니지만 최선도 아닙니다.

스팸 메일과 동일한 메일을 스팸이라고 지정하는 대신 스팸 메일과 매우 유사한 메일을 구분하도록 스팸 필터를 프로그램할 수 있습니다. 이렇게 하려면 두 메일 사이의 유사도similarity를 측정해야 합니다. 두 메일 사이의 매우 간단한 유사도 측정 방법은 공통으로 포함한 단어의 수를 세는 것입니다. 스팸 메일과 공통으로 가지고 있는 단어가 많으면 스팸으로 분류합니다.

이를 사례 기반 학습instance-based learning 이라고 합니다. 시스템이 사례를 기억함으로써 학습합니다. 그리고 유사도 측정을 사용해 새로운 데이터에 일반화합니다.

모델 기반 학습
샘플로부터 일반화시키는 다른 방법은 이 샘플들의 모델을 만들어 예측에 사용하는 것입니다. 이를 모델 기반 학습model-based learning이라고 합니다.
예를 들어 돈이 사람을 행복하게 만드는지 알아본다고 가정합시다. OECD 웹사이트에서 더 나은 삷의 지표Better Life Index데이터와 IMF 웹사이트에서 1인당 GDP통계를 내려받습니다. 두 데이터 테이블을 합치고 1인당 GDP로 정렬합니다. 일부 국가를 무작위로 골라서 그래프를 그려봅시다.

여기서 어떤 경향을 볼 수 있습니다! 데이터가 흩어져 있지만(즉, 어느 정도 무작위성이 있지만) 삶의 만족도는 국가의 1인당 GDP가 증가할 수록 거의 선형으로 같이 올라갑니다. 그러므로 1인당 GDP의 선형 함수로 삶의 만족도를 모델링해보겠습니다. 이 단계를 모델 선택model selection이라고 합니다. 1인당 GDP라는 특성 하나를 가진 삶의 만족도에 대한 선형 모델linear model입니다.

이 모델은 두 개의 모델 파라미터을 가집니다. 이 모델 파라미터를 조정하여 어떤 선형 함수를 표현하는 모델을 얻을 수 있습니다.
모델을 사용하기 전에 @와 @을 정의해야 합니다. 모델의 최상의 성능을 내도록 하는 값을 어떻게 알 수 있을 까요? 이 질문에 대답하려면 측정 지표를 정해야 합니다. 모델이 얼마나 좋은지 측정하는 효용 함수utility function(또는 적합도 함수fitness function)를 정의하거나 얼마나 나쁜지 측정하는 비용 함수cost function를 정의할 수 있습니다. 선형 희귀에서는 보통 선형 모델의 예측과 훈련 데이터 사이의 거리를 재는 비용 함수를 사용합니다. 이 거리를 최소화하는 것이 목표 입니다.

여기에서 선형 휘귀Linear Regression알고리즘이 등장합니다. 알고리즘에 훈련 데이터를 공급하면 데이터에 가장 잘 맞는 선형 모델의 파라이멑를 찾습니다. 이를 모델을 훈련training시킨다고 말합니다. 이 경우에는 알고리즘의 최적의 파라미터로 @=4.85와 @=4.91*10-5을 찾습니다.

이제 이 모델을 사용해 예측을 할 수 있습니다. 예를 들어 OECD 데이터에 없는 키프로스 Cyprus 사람들이 얼마나 행복한지 알아보려면 이 모델을 사용해 예측할 수 있습니다. 키프로스의 1인당 GDP를 보면 22,587달러이므로 이를 모델에 적용해 4.85 + 22,587*4.91*10-5 = 5.96과 같이 삷의 만족도를 계산합니다.

NOTE 사례 기반의 학습 알고리즘을 사용한다면 먼저 1인당 GDP가 키프로스와 가장 가까운 슬로베니아 Slovenia(20,732달러)를 찾습니다. OECD데이터 있는 슬로베니아의 삶의 만족도가 5.7로 예측합니다. 조금 더 확대해서 그 다음으로 가까운 두 나라를 더 고려하면 삶의 만족도가 5.1과 6.5인 포르투갈과 스페인이 있습니다. 이 세값을 평균하면 모델 기반의 예측과 매우 비슷한 5.77이 됩니다. 이 간단한 알고리즘을 k-최근접 이웃k-Nearest Neighbors 희귀라고 합니다(여기서 k = 3입니다).

이전 코드에서 선형 희귀모델을 k-최근접 이웃 희귀로 바꾸려면 아래  한줄을
model = sklearn.linear_model.LinearRegression() 다음과 같이 바꾸면 됩니다.
model = sklearn.neighbors.KNeighborsRegressor(n)neighbors=3)

모든 게 다 잘되면 모델은 좋은 예측을 내놓을 것입니다. 아니면 더 많은 특성(고용률, 건강, 대기오염 등)을 사용하거나, 좋은 훈련 데이터를 더 많이 모으거나, 더 강력한 모델(예를 들면 다항 휘귀모델)을 선택해야 할지 모릅니다.

지금까지의 작업을 요약해 보겠습니다.
- 데이터를 분석합니다.
- 모델을 선택합니다.
- 훈련 데이터로 모델을 훈련시킵니다(즉, 학습 알고리즘이 비용 함수를 최소화하는 모델 파라미터를 찾습니다).
- 마지막으로 새로운 데이터에 모델을 적용해 예측을 하고(이를 추론inference이라고 합니다). 이 모델이 잘 일반화 되길 기대합니다.

이것이 전형적인 머신러닝 프로젝트의 형태입니다. 2장에서 완전한 프로젝트를 진행하면서 직접 경험해볼 것 입니다.

지금까지 많은 부분을 다뤘습니다. 머신러닝이 무엇인지, 왜 유용한지, 머신러닝 시스템이 가장 일반적인 분류는 무엇인지, 그리고 전형적인 머신러닝 프로젝트의 작업 흐름이 어떤지 배웠습니다. 다음 절에서는 학습 과정에서 발생할 수 있는 문제와 정확한 예측을 방해하는 것들에 대해 알아보겠습니다.




2018년 7월 3일 화요일

1.2 왜 머신러닝을 사용하는가?

전통적인 프로그래밍 기법을 사용해 어떻게 스팸 필터를 만들 수 있을지 생각해 봅시다.

1. 먼저 스팸에 어떤 단어들이 주로 나타나는지 살펴봅니다. 그러면 '4U', '신용카드', '무료', '굉장한' 같은 단어나 구절이 제목에 많이 나타나는 경향이 있다는 것을 알 수 있습니다. 어쩌면 보낸이의 이름이나 메일 주소, 본문 등에서 다른 패턴을 감지할 수도 있습니다.

2. 발견한 각 패턴을 감지하는 알고리즘을 작성하여 프로그램이 이런 패턴을 발견했을 때 그 메일을 스팸으로 분류하게 합니다.

3. 프로그램을 테스트하고 충분한 성능이 나올 때까지 1단계와 2단계를 반복합니다.

전통적인 접근 방법에서는 문제가 단순하지 않아 규칙이 점점 길고 복잡해지므로 유지 보수하기 매우 힘들어집니다

반면 머신러닝 기법에 기반을 둔 스팸 필터는 일반 메일에 배해 스팸에 자주 나타나는 패턴을 감지하여 어떤 단어와 구절이 스팸 메일을 판단하는 데 좋은 기준인지 자동으로 학습합니다. 그러므로 프로그램이 훨씬 짧아지고 유지 보수하기 쉬우며 대부분 정확도가 더 높습니다.

더군다나 스팸 메일 발송자가 '4U'를 포함한 모든 메일이 차단된다는 것을 안다면 '4U' 대신 'For U'를 쓰기 시작할지도 모릅니다. 전통적인 프로그래밍 방식의 스팸 필터는 'For U' 메일을 구분하기 위해 수정이 필요합니다. 스팸 메일 발송자가 스팸 필터에 대항해 계속 단어를 바꾸면 영원히 새로운 규칙을 추가해야 합니다.

하지만 머신러닝 기반의 스팸 필터는 사용자가 스팸으로 지정한 메일에 유독 'For U'가 자주 나타나는 것을 자동으로 인식하고 별도의 작업을 하지 않아도 자동으로 이 단어를 스팸으로 분류합니다.

머신러닝이 유용한 또 다른 분야는 전통적인 방식으로는 너무 복잡하거나 알려진 알고리즘이 없는 문제입니다. 음성 인식speech recognition을 예로 들 수 있습니다. 'one'과 'two'두 단어를 구부하는 프로그램을 작성한다고 합시다. 단어 'tow'는 높은 피치pitch의 사운드('T')로 시작하므로 높은 피치의 사운드 강도를 측정하는 알고리즘을 하드코딩해서 'one'과 'two'를 구분할 수 도 있습니다. 당연히 이 방법은 소음이 있는 환경에서 수백만명이 말하는 여러 언어로 된 수천개의 단어를 구분하는 것으로 확장하기 어렵습니다. 각 단어를 녹음한 샘플을 사용해 스스로 학습하는 알고리즘을 작성하는 것이 현재 가장 좋은 솔루션입니다.

우리는 머신러닝을 통해 배울 수도 있습니다. 즉, 머신러닝 알고리즘이 학습한 것을 조사할 수 있습니다. 예를 들어 스팸 필터가 충분한 스팸 메일로 훈련되었다면 스팸을 예측하는데 가장 좋은 단어와 단어의 조합이 무엇인지 확인할 수 있습니다. 가끔 예상치 못한 연관 관계나 새로운 추세가 발견되기도 해서 해당 문제를 더 잘 이해하도록 도와줍니다.

머신러닝 기술을 적용해서 대용량의 데이터를 분석하면 겉으로는 보이지 않던 패턴을 발견할 수 있습니다. 이를 데이터 마이닝(data mining)이라고 합니다.

요약하면 머신러닝은 다음 분야에 뛰어납니다.

- 기존 솔루션으로는 많은 수동 조정과 규칙이 필요한 문제: 하나의 머신러닝 모델이 코드를 간단하고 더 잘 수행되도록 할 수 있습니다.
- 전통적인 방슥으로는 전혀 해결 방법이 없는 복잡한 문제: 가장 뛰어난 머신러닝 기법으로 해결 방법을 찾을 수 있습니다.
- 유동적인 환경: 머신러닝 시스템은 새로운 데이터에 적응할 수 있습니다.
- 복잡한 문제와 대량의 데이터에서 통찰 얻기



1.1 머신러닝이란?

일반적인 정의
[머신러닝은] 명식적인 프로그래밍 없이 컴퓨터가 학습하는 능력을 갖추게 하는 연구 분야다.
                                                                 - 아서 사무엘Arthur Samuel, 1959

공학적인 정의
어떤 작업 T에 대한 컴퓨터 프로그램의 성능을 P로 측정했을 때 경험 E로 인해 성능이 향상됐다면, 이 컴퓨터 프로그램은 작업 T와 성능 측정 P에 대해 경험 E로 학습한 것이다.
                                                                 - 톰 미첼 Tom Mitchell, 1997

ex) 스팸 필터 = (스팸 메일 + 일반 메일) 샘플
시스템이 학습하는 데 사용하는 샘플 -> 훈련 세트(training set)
훈련 데이터 -> 훈련 사례(training instance, 혹은 샘플)

작업 T = 새로운 메일 스팸인지 구분  경험 E는 훈련 데이터(training data)   성능 측정 P는 직접 정의    이 성능 측정을 정확도(accuracy)라고 부르며 분류 작업에 자주 사용