페이지

2022년 1월 18일 화요일

Neural Networks A Comprehensive Foundation

 ABBREVIATIONS

AI                artificial intelligence

APEX            adaptive principal components extraction

AR                autoregressivve


BBTT            back propagation through time

BM              Boltzmann machine

BP                back propagation

bS                bits per second

BOSS            bounded, one-sided saturation

BSB            Blind source (signal) separation


CART         classification and regression tree

cmm            correlation matrix memory

CV             cross-validationi


DEKF        decoupled extended Kalman filter

DFA        deterministic finite-state automata

DSP        digital signal processor


EKF         extended Kalman filter

EM        expectaion-maximization


FIR           finite-duration impulse response

FM            frequency-modulation(signal)


GEKF        global extended Kalman filter

GCV        generalized cross-validation

GHA        generalized Hebbian algorithm

GSLC        generalized sidelobe canceler


HME        hierarachicl mixture of experts

HMM       hidden Markov model

Hz            hertz


ICA        independent componects analysis

Infomax        maximum mutual information


KR            kernel regression


LMS            least-mean-squre

LR                likelihood ratio

LTP            long-term potentiation

LTD            long-term depression

LR            likelihood ration

LVO        learning vector quantization


MCA       minor components analysis

MDL        minimum description length

ME           mixture of experts

MFT            mean-field theory

MIMO        multiple input-multiple output

ML            maximum likelihood

MLP            multilayer perceptron

MRAC         model reference adaptive control


NARMA     nonlinear autoregressive moving average

NARX        nonlinear autoregressive with exogenous inputs

NDP         neuron-dynamic programming

NW           Nadaraya-Watson (estimator)

NWKR        Nadaraya-Watson kernal regression


OBD            optimal brain damage

OBS            optimal brain surgeon

OCR            optical character recognition

ODE            ordinary differential equation


PAC            probably approximately correct

PCA            principal components analysis

pdf            probability density function

pmf            probability mass function



RBF            radial basis function

RMLP         recurrent multialyer perceptron

RTRL            real-time recurrent learning


SIMO         single input-multiple output

SISO            single input-single output

SNR            signal-to-noise ratio

SOM            self-organizing map


SRN            simple recurrent network(also referred to as Elman's recurrent network)

SVD            singular vale decomposition

SVM            support vector machine


TDNN        time-delay neural network

TLFN        time lagged feedforward  network


VC         Vapnik-Chervononkis(dimension)

VLSI        very-large-scale integration

XOR        exclusive OR







s

2021년 8월 13일 금요일

NLP-Natural Language Processing ( Regular Expressions )

 What and Why


1) What is it

 - A language to specify the rules for the set of possible strings that you want to search in a corpus of text

"You password must have at least 8 characters, at least 1 upper case letter, at least 1 lowercase letter, at least 1 number and at lleast 1 symbol from the special symbols"


2) Why

- Why not using a pyhton program for seaching?

- Why not string functions?

- Can these find everything one wants?




2021년 7월 25일 일요일

Spring RSocket Validation / Error Handling

* RSocket treats app exceptions as an ApplicationErrorException(string message)

* Raising error signal will end response

* Prefer

    - defaultIfEmpty

    - switchIfEmpty

    - onErrorReturn

* Send exception/error details as Item response

* @MessageExceptionHandler 

2021년 7월 23일 금요일

Spring RSocket API Model

RSocket Request : Response Input Type Output Tpye
Request & Response 1:1 Mono<T> Mono<R>
Fire & Forget       1:0 Mono<T> Mono<Void>
Request Stream 1:N Mono<T> Flux<R>
Request Channel M:N Flux<T> Flux<R>


Routing

@MessageMapping("create.user")
public Mono<User> createUser(Mono<User> usermono){
    return this.userService.create(usermono);
}

@MessageMapping("update,user")
public Mono<User> updateUser(Mono<User> usermono){
    return this.userService.update(usermono);
}

RSocketRequester W/O Data

rSocketRequester.route("product.all")
                 //.data()
                 .retrieveFlux(Product.class);


2021년 7월 17일 토요일

RSocket Response - Streaming vs Single List

  • Streaming T
    • Size - Potentially large /unknown
      • Pagination
      • Uber driver location updates
      • Online home-delivery update
    • Receiving side might take too much time to process
      • File upload
    • More effcient than multiple Request & Response calls

  • Single List<T>
    • Size is small & Data already in hand!
    • More efficient than streaming response

RSocket -> Peer-to-Peer