페이지

2018년 4월 1일 일요일

CHAPTER 14 가중치의 진짜 업데이트

아직 우리는 인공신경망에서 가중치를 어떻게 업데이트해야 하는가의 핵심적인 질문에 답하지 않았습니다. 지금가지의 고정은 이에 대한 답을 하기 위한 과정이었으며 이제 거의 다 왔습니다. 이 비밀을 풀기 위해 반드시 이해해야 할 핵심 아이디어 한 가지만 더 이해하면 됩니다!

지금까지는 네트워크의 각 계층에 걸쳐 역전파되는 오차를 구해봤습니다. 이처럼 오차를 구하는 이유는 인공 신경망이 보다 나은 답을 출력하게 하기 위해 가중치를 조정해가는 데 지침 역할 을 하는 것이 오차이기 때문입니다. 이러한 과정은 이 책의 앞 부분에 나왔던 선형 분류자 예제에서부터 우리가 보아왔던 것입니다.
 하지만 신경망에서 노드는 단순한 선형 분류자가 아닙니다. 노드는 입력되는 신호에 가중치를 적용한 후 이의 합을 구하고 다시 여기에 시그모이드 활성화 함수를 적용하는 식으로 좀 더 복잡한 구조를 가집니다. 그렇다면 이처럼 정교한 노드 사이를 연결하는 연결 노드의 가중치를 어떻게 업데이트해야 할까요? 우리는 왜 어떤 끝내주는 대수학공식을 이용해 가중치를 단번에 구해낼 수 없는 것일까요?

- 가중치 계산
신경망에는 너무나도 많은 가중치의 조합이 존재합니다. 또한 신호가 여러 개의 계층을 타고 전파되어나갈 때 한 계층을 거칠 때마다 직전 계층의 출력 값이 다음 계층의 입력값이 되므로 함수의 함수,ㅡ 함수의 함수의 함수...같은 식으로 수많은 함수의 조합이 필요하게 됩니다. 따라서 수학 연산의 과정이 너무 복잡하게 되므로 가중치를 한 방에 풀어주는 대수학을 활용할 수 없는 것입니다.

댓글 없음: