페이지

2022년 9월 30일 금요일

27.2 테일러 급수 이론

 본론으로 넘어가보죠, 이제부터 sin함수의 미분을 다른 방법으로 계산해보려 합니다. 바로 테일러 급수(Taylor Series)를 이용한 방법입니다. 테일러 급수란 어떤 함수를 다항식으로 근사하는 방법으로, 수식으로는 다음과 같습니다.


이것이 점 a에서 f(x)의 테일러 급수입니다. a는 임의의값이고, f(a)는 점 a에서 f(x)의 값입니다. 또한 f`는 1차 미분, f``는 2차 미분, f```는 3차 미분을 뜻합니다. 그리고 !기호는 계승(factorial)을 뜻하며 n!, 즉 n의 계승은 1에서 n까지 모든 정수의 곱을 말합니다. 예건대 5! = 5 * 4 * 3 * 2 * 1 = 120 이 됩니다.

2차 미분은 미분한 값을 한 번 더 미분한 것입니다. 물리 세계에서 예를 찾아보면 위치의 미분(변화)은 속도이면 소도의 미분(변화)은 가속도입니다. 이때 속도가 1차 미분이고 가속도가 2차 미분에 해당합니다.


테일러 급수에 의해 f(x)는 점 a를 기점으로 [식 27.1]로 나타낼 수 있습니다. [식 27.1]은 1차 미분, 2차 미분, 3차 미분, .. 식으로 항이 무한히 계속되지만, 어느 시점에서 중단하면 f(x)의 값을 근사할 수 있습니다. 물론 항이 많아질수록 근사의 정확도가 높아집니다.

한편  a = 0일 때의 테일러 급수를 매클로린 전개(Maclaurin's series)라고도 합니다. 실제로 [식 27.1]에 a = 0 을 대입하면 다음과 같이 됩니다.

    


[식 27.2]에서  a = 0으로 한정함으로써 더 간단한 수식이 되었습니다. 이제 f(x) = sin(x)를 [식 27.2]에 적용시켜 보겠습니다. 그러면 f`(x) = cos(x), f```(x) = -sin(x), f```(x) = -cos(x), f''''(x) = sin(x), ... 형태가 반복되는데, sin(0) = 0, cos(x) = 1이기 때문에 다음식을 이끌어낼 수 있습니다.


[식27.3]에서 보듯 sin함수는 x의 거듭제곱으로 이루어진 항들이 무산이 계속되는 형태로 표현됩니다. 여기서 중요한 점은 의 i가 커질수록 근사 정밀도가 좋아진다는 것이니다. 또한 i 가 커질수록 (-1)***i(x***(2i+1)) (2i + 1)의 절댓값은 작아지므로, 이 값을 참고하여 i의 값(반복횟수)을 적절히 결정할 수 있습니다.

댓글 없음: