페이지

2018년 1월 7일 일요일

제3절 분석 과제 발굴

분석 과제는 풀어야 할 다양한 문제를 데이터 분석 문제로 변환한 후 이해관계자들이 이해하고 프로젝트로 수행할 수 있는 과제정의서 형태로 도출된다. 분석 과제를 도출하기 위한 방식은 크게 2가지로 나누어진다.

- 하향식 접근 방식(Top Down Approach)
문제가 주어지고 이에 대한 해법을 찾기 위하여 각 과정이 체계적으로 단계화되어 수행하는 방식

- 상향식 접근 방식(Bottom Up Approach)
문제의 정의 자체가 어려운 경우 데이터를 기반으로 문제의 재정의 및 해결 방안을 탐새갛고 이를 지속적으로 개선하는 방식

문제가 주어져 잇는 상태에서 답을 구하는 하향식 접근 방식이 전통적으로 수행되었던 분석 과제 발굴 방식이다. 그러나 대규모의 다양한 데이터를 생성하고 빠르게 변하는 기업환경에서는 문제 자체의 변화가 심해 정확하게 문제를 사전에 정의하는 것이 어려워지고 있다. 이에 따라 단순히 주어진 문제를 잘 푸는 것뿐만 아니라 데이터를 활용하여 생각하지 못했던 인사이트(Insight)를 도출하고 시행착오를 통해서 개선해가는 상향식 접근 방식의 유용성이 점차 증가하고 있는 추세이다.

__________________________________________________________________

그림에 나와 있는 디자인 사고(Deging Thinking)프로세스의 예처럼 새로운 상품을 개발하거나 전략 수립 등 중요한 의사결정을 할 때 가능한 오션을 도축하는 상향식 접근 방식(Bottom Up Approach)의 발산(Diverge)단계와 도출된 옵션을 분석하고 검증하는 하향식 접근 방식(Top Down Approach)의 수렵(Converge)단계를 반복적으로 수행하는 식으로 상호 본완하는 것이 동적인 환경에서 분석의 가치를 높일수 있는 최적의 의사결정 방식이 된다.

분석 과제 발굴을 두가지 접근 방식으로 나누었지만 실제 분석 과정에서는 혼용되어 활용되는 경우가 많다. 그런 경우 능동적으로 대처하기 위해서 각 접근 방식의 특징을 잘 이해하고 적절한 절차 및 관리 방안의 활용이 필요하다.

1. 하향식 접근법(Top Down Approach)
하향식 분석 접근법은 현황 분석을 통해서 또는 인식된 문제점 혹은 전략으로부터 기회나 문제를 탐색(Probleam Discovery)하고 해당 문제를 데이터 문제로 정의(Problem Definition)한 후 해결방안 탐색(Solution Search), 그리고 데이터 분석의 타당성 평가(Feasibility Study)를 거쳐 분석 과제를 도출하는 과정으로 이루어져 진다.

가. 문제 탑색(Problem Discovery) 단계
개별적으로 인지하고 있는 문제를 단순히 정리하는 것보다 전체적인 관점의 기준 모델을 활용하여 빠짐없이 문제를 도출하고 식별하는 것이 중요하다. 전체적인 관점의 기준 모델로는 기업 내.외부 환경을 포괄하는 비즈니스 모델과 외부 참조모델이 있다. 과제 발굴 단계에서는 현재 데이터를 소유하고 있는지, 이를 해결하기 위한 방안은 무엇인지 등에 대한 세부적인 구현 및 솔루션에 중점을 두는것이 아니라 문제를 해결함으로써 발생하는 가치에 중점을 두는것이 중요하다.

1) 비즈니스 모델 기반 문제 탐색
과제 발굴을 위한 기본 틀로써 기업 내.외부 환경을 포괄하는 비즈니스 모델이라는 틀(Frame)을 활용하여 가치가 창출될 문제를 노락없이 도출할 수 있다. 비즈니스 모델 관점에서는 해당기업의 사업 모델을 도식화한 비즈니스 모델 캔버스의 9가지 블록을 단순화하여 업무(Operation), 제품(Product), 고객(Customer) 단위로 문제를 발굴하고, 이를 관리하는 두 가지의 영역인 규제와 감사(Audit & Regulation)영역과 지원 인프라(IT & Human Resource) 영역에 대한 기회를 추가로 도축하는 작업을 수행한다.

1) 업무(Operation)
제품 및 서비스를 생산하기 위해서 운영하는 내부 프로세스 및 주용 자원(Resource)관련 주제 도출
예) 생산 공정 최적화, 재고량 최소화 등

2) 제품(Product)
생산 및 제공하는 페품.서비스를 개선하기 위한 관련 주제 도출
예) 제품의 주요 기능 개선, 서비스 모니터링 지표 도출 등

3) 고객(Customer)
제품.서비스를 제공받는 사용자 및 고객, 이를 제공하는 채널의 관점에서 관련 주제 도출
예) 고객 Call 대기 시간 최소화, 영업점 위치 최적화 등

4) 규제와 감사(Regulation & Audit)
제품.서비스를 제공받는 사용자 및 고객, 이를 제공하는 채널의 관점에서 관련 주제 도출
예) 제공 서비스 품질의 이상 징후 관리, 새로운환경 규제 시 예상되는 제품 추출 등

5) 지원 인프라(IT & Human Resource)
분석을 수행하는 시스템 영역 및 이를 운영.관리하는 인력의 관점에서 주제 도출
예) EDW 최적화, 적정 운영 인력 도출 등

현재의 사업 방식 및 비즈니스에 대한 문제 해결은 최적화 및 단기 과제 형식으로 도출될 가능성이 높기 때문에 새로운 문제의 발굴 및 장기적인 접근을 위해서는 기업이 현재 수행하고 있는 비즈니스뿐만 아니라 환경과 경쟁 구조의 변화 및 역량의 재해석을 통한 "혁신(Innovation)"의 관점에서 분석 기회를 추가 도출하는 것이 요구된다. 즉, 현재 사업을 영위하고 있는 환경, 경쟁자, 보유하고 있는 역량, 제공하고 있는 시장 등을 넘어서 거시적 관점의 요인, 경쟁자의 동향, 시장의 니즈 변화, 역량의 재해석 등 새로운 관점의 접근을 통해 새로운 유형의 분석 기회 및 주제 발굴을 수행해야 한다. 이러한 작업을 수행할 때는 분석가뿐만 아니라 해당 기능을 수행하는 직원 및 관련자에 대한 폭넓은 인터뷰와 워크숍 형태의 아이디어 발굴(Ideation)작업이 필요하다.

1) 거시적 관점의 메가 트렌드에서는 현재의 조직 및 해당 산업에 폭넓게 영향을 미치는 사회.경제적 용인을 STEEP로 요약되는 Social(사회), Technological(기술), Economic(경제), Environmental(환경), Political(정치) 영역으로나누어서 좀 더 폭넓게 기회 탐색을 수행한다.

- 사회(Social) 영역
비즈니스 모델의 고객(Customer)영역에 존재하는 현재 고객을 확장하여 전체 시장을 대상으로 사회적 문화적, 구조적 트렌드 변화에 기반한 분석 기회 도출
예) 노령화, 밀레니얼 세대의 등장, 저출산에 따른 해당 사업 모델의 변화 등

- 기술(Technological) 영역
과학, 기술, 의학 등 최신기술의 등장 및 변화에 따른 역량 내재화와 제품.서비스 개발에 대한 분석 기회 도출
예) 나노 기술, IT 융합 기술, 로봇 기술의 고도화에 따른 기존 제품의 Smart화 등

- 경제(Economic) 영역
산업과 금융 전반의 변동성 및 경제 구조 변화 동향에 따른 시장의 흐름을 파악하고 이에 대한 분석 기회 도출
예) 원자재 가격, 환율, 금리 변동에 따른 구매 전략의 변화 등

- 환경(Environmental) 영역
환경과 관련된 정부, 사회단체, 시민사회의 관심과 규체 동향을 파악하고 이에 대한 분석 기회 도출
예) 탄소 배출 규제 및 거래 시장 등장에 따른 원가 절감 및 정보 가시화 등

- 정치(Political) 영역
주요 정책방향, 정세, 지정학적 동향 등의 거시적인 흐름을 토대로 한 분석 기회 도출
예) 대북 관계 동향에 따른 원자재 구매 거래선의 다변화 등

2)경쟁자 확대 관점에서는 현재 수행하고 있는 사업 영역의 직접 경쟁사 및 제품.서비스뿐만 아니라 대체재와 신규 진입자 등으로 관점을 확대하여 위협이 될 수 있는 상황에 대한 분석 기회 발굴의 폭을 넓혀서 탐색한다.

- 대체제(Substitute) 영역
융합적인 경쟁 환경에서 현재 생산을 수행하고있는 제품.서비스의 대체재를 파악하고 이를 고려한 분석 기회 도출
예) 현재 오프라인으로 제공하고 있는 자사의 상품.서비스를 온라인으로 제공하는 것에 대한 탐색 및 잠재적 위협 파악

- 경쟁자(Competitor) 영역
현재 생산하고 있는 제품.서비스의 주요 경쟁자에 대한 동향을 파악하여 이를 고려한 분석 기회 도출
예) 식별된 주요 경쟁사의 제품.서비스 카탈로그 및 전략을 분석하고 이에 대한 잠재적 위협 파악

- 신규 진입자(New Entrant) 영역
현재 직접적인 제품.서비스의 경쟁자는 아니지만, 향후 시장에 대해서 파괴적인 역할을 수행할 수 있는 신규 진입자에 대한 동향을 파악하여 이를 고려한 분석 기회 도출
예) 새로운 제품에 대한 크라우드 소싱(Crowd Sourcing) 서비스인 Kickstarter의 유사 제품을 분석하고 자사의 제품에 대한 잠재적 위협 파악

3) 시장의 니즈 탐색 관점에서는 현재 수행하고 있는 사업에서의 직접 고객 뿐만 아니라 고객과 접촉하는 역할을 수행하는 채널(Channel) 및 고객의 구매와 의사결정에 영향을 미치는 영향자들(Influencer)에 대한 폭넓은 관점을 바탕으로 분석 기회를 탐색한다.

- 고객(Customer) 영역
고객의 구매 동향 및 고객의 컨텍스트를 더욱 깊게 이해하여 제품.서비스의 개선 필요에 필요한 분석 기회 도출.
예) 철강 기업의 경우 조선 산업과 자동차 산업의 동향 및 주요 거래선의 경영 현황 등을 파악하고 분석 기회 도출 등

- 채널(Channel) 영역
영업 사원, 직판 대리점, 홈페이지 등의 자체적으로 운영하는 채널뿐만 아니라 최종 고객에게 상품.서비스를 전달하는 것에 경로로 존재하는 가능한 경로를 파악하여 해당 경로에 존재하는 채널별로 분석 기회를 확대하여 탐색
예) 은행의 경우 인터넷전문은행 등 온라인 채널의 등장에 따른 변화에 대한 전략 분석 기회 도출 등

- 영향자들(Influencer) 영역
기업 의사결정에 영향을 미치는 주주.투자자.협회 및 기타 이해관계가즤 주요 관심사항에 대해서 파악하고 분석기회 탐색
예)M&A 시장 확대에 따른 유사 업종의 신규 기업 인수 기회 탐색 등

4) 역량의 재해석 관점에서는 현재 해당 조직 및 기업이 보유한 역량뿐만 아니라 해당 조직의 비즈니스에 영향을 끼치는 파트너 너트워크를 포함한 활용 가능한 역량을 토대로 폴넓은 분석 기회를 탐색한다.
- 내부 역량(Competency) 영역
지적 재산권, 기술력 등 기본적인 것 뿐만 아니라 중요하면서도 자칫 간과하기 쉬운 지식, 기술, 스킬등의 노하우와 인프라적인 유형 자산에 대해서 폭넓게 재해석하고 해당 영역에서 분석 기회를 탐색한다.
예) 자사 소유 부동산을 활용한 부가 가치 창출 기회 발굴 등

- 파트너와 네트워크(Partners & Network) 영역
자사가 직접 보유하고 있지는 않지만 밀접한 관계를 유지하고 이쓴 관계사와공급사 등의 역량을 활용해 수행할 수 있는 기능을 파악해보고 이에 대한 분석 기회를 추가적으로도출
예) 수출입.통관 노하우를 활용한 추가 사업기회 탐색 등

2) 외부 참조 모델 기반 문제 탐색
잘 알려진 분제를 푸는 것뿐만 아니라 새로운 문제를 발굴하기 위해서는(문제와 과제를 도출해 내는 기준 모델로서) 유사.동종의 환경에서 기존에 수행한 분석 과제를 살펴보는 것도 주요한 시사점을 도출해 준다.
유사.동종 사례 벤치마킹을 통한 분석기회 발굴은 제공되는 산업별, 업무 서비스별 분석테마 후보 그룹(Pool)을 통해 "Quick & Easy"방식으로 필요한 분석 기회가 무엇인지에 대한 아이디어를 얻고 기업에 적용할 분석테마 후보 목록을 위크숍 형태의 브레인스토밍(Brain Storming)을 통해 빠르게 도출하는 방법이다.

특히 현재 환경에서는 데이터를 활용하지 않은 업종 및 서비스가 사실상 존재하지 않기 때문에 데이터를 분석을 통한 인사이트(Insight)를 도출하고 업무에 활용하는 사례들을 발굴하여 자사의 업종 및 업무 서비스 에 적용할 수 있다. 따라서 산업 및 업종을 불문하고 데이터 분석 사례를 기반으로 분석테마 후보 그룹을 미리 정의하고 그 후보 그룹을 통해 해당 기업에 벤치마킹할 대상인 분석기회를 고려한다면 빠르고 쉽게 분석기회를 도출할 수 있다.

평상시 지속적인 조사와 데이터 분석을 통한 가치 발굴 사례를 정리하여 풀(Pool)로 만들어 둔다면 과제 발굴 및 탐색 시 빠르고 의미 있는 분석 기회 도출이 가능하다. 또한 유사.동종 업계뿐만 아니라 타 업종 및 분양의 데이터 부석 활용 사례 또한 정리해 놓을 경우 새로운 주제 탐색에 도움이 된다.

3) 분석 유즈 게이스(Analytics Use Case) 정의
현재의 비즈니스 모델 및 유사.동종사례 탐색을 통해서 빠짐없이 도출한 분석 기회들을 구체적인 과제로 만들기에 앞서 분석 유즈 게이스로 표기하는 것이 필요하다. 분석 유즈케이스는 풀어야 할 문제에 대한 상세한 설명 및 해당 문제를 해결했을 때 발생하는 효과를 명시함으로써 향후 데이터 분석 문제로의 전환 및 적합성 평가에 활용하도록 한다.

분석 유즈 케이스 예시

업무      분석 유즈 게이스                                    설명                                                효과
재무       자금 시재 예측                일별로 예정된 자금 지출과 입금을 추정           자금 과부족 현상 예방,
                                                                                                                           자금 운용 효율화
            구매 최적화                   구매 유형과 구매자별로 과거 실적과 구매               구매 비용 절감
                                                  조건을 비교.분석하여 구매 방안 도출
고객     서비스 수준 유지               서비스별로 달성 수준을 측정하고 평가한             품질수준 제고,
                                                 뒤 목표 수준을 벗아났으면 경보 발행                    고객만족 제고
           고개간족 달성                고객 세그먼트별로 만족 수준을 측정하고               고객만족 제고,
                                                 이상이 있으면 원인을 분석하여 대책 강구              고객유지 향상
         파이프라인 최적화            파이프라인 단계별로 고객 상태를 파악하고           목표 매추 달성,
                                                  수조 규모를 예상하여 필요한 고객 기회를          고객반응률 향상
                                                추정하여 영업 촉진   
판매  영업성과 분석                  영업 직원별 사용 원가(급여 포함)와 실적을          영업 수율 향상,
                                                분석하고 부진한 영업 직원 세그먼트를 식별         영업 직원 생산성 제고
                                                하여 영업 정책에 반영

나. 문제 정의(Problem Definition)단계
식별된 비즈니스 문제를 데이터의 문제로 변환하여 정의하는 단계이다. 앞서 수행한 문제 탐색의 단계가 무엇을(What) 어떤 목적으로(Why)수행해야 하는지에 대한 과점이었다면, 본 단계에서는 이를 달성하기 위해서 필요한 데이터 및 기법(How)을 정의하기 위한 데이터 분석의 문제로의 변환을 수행하게 된다. 예를 들어, '고객 이탈의 증대'라는 비즈니스 문제는 '고객의 이탈에 영향을 미치는 요인을 식별하고 이탈 가능성을 예측'하는 데이터 분석 문제로 변환될 수 있다.

데이터 분석 문제의 정의 및 요구사항은 분석을 수행하는 당사자뿐만 아니라 해당 문제가 혜결되었을 때 효요을 얻을 수 있는 최종사용자(End User)과전ㅁ에서 이루어져야 한다. 데이터 분석 문제가 잘 정의되었을때 필요한 데이터의 정의 및 기법 발굴이 용이하기 때문에 가능한 정확하게 분석의 관점으로 문제를 재정의할 필요가 있다.

다. 해결방안 탐색(Solution Search)단계
이 단계에서는 정의된 데이터 분석 문제를 해결하기 위한 다양한 방안이 모색된다. 동일한 데이터 분석문제라 해도 어떤 데이터 또는 분석 시스템을 사용할 것인지에 따라서 소용되는 예산 및 활용 가능한 도구(Tool)가 다르기 때문에 다각도로 고려할 필요가 있다. 즉, 기존 정보시스템의 단순한 보완으로 분석이 가능한지, 엑셀 등의 간단한 도구로 분석이 가능한지, 또는 하둡 등 분산 병렬처리를 활용한 빅데이터 분석 도구를 통해 보다 체계적이고 심도 있는 방안이 고려되는지 등등 여러 대안이 도출될 수 있다. 또한 분석 역량을 기존에 가지고 있는 지의 여부를 파악하여 보유하고 있지 않은 경우에는 교육이나 전문 인력 채용을 통한 역량을 확보하거나 분석 전문 업체를 활용하여 과제를 해결하는 방안에 대해 사전 검토를 수행한다.

라. 타당성 검토(Feasibility Study)단계
도출된 분석 문제나 가설에 대한 대안을 과제화하기 위해서는 다음과 같은 다각적인 타당성 분석이 수행되어야 한다.

1) 경제적 타당성
비용 대비 편익 분석 관점의 접근이 필요하다. 비용 항목은 데이터, 시스템, 인력, 유지보수 등과 같은 분석 비용으로 구성된다. 편익으로는 분석 결과를 적용함으로서 실질적 비용 절감, 추가적 매출과 수익 등과 같은 경제적 가치로 산출된다.

2) 데이터 및 기술적 타당성
데이터 분석에는 데이터 존재 여부, 분석 시스템 환경, 그리고 분석 역량이 필요하다. 특히, 분석 역량의 경우 그림 처럼 실제 프로젝트 수행 시 걸림돌이 되는 경우가 많기 때문에 기술적 타당성 분석시 역량 확보 방안을 사전에 수립해야 한다. 이를 효과적으로 평가하기 위해서는 비즈니스 지식과 기술적지식이 요구되기 때문에 비즈니스 분석가, 데이터 분석가, 시스템 엔지니어 등과의 협업이 수반되어야 한다.
______________________________________________________________________________________________________

도출된 여러 대안 중에서 평가 과정을 거쳐 가장 우월한 대안을 선택한다. 도출한 데이터 분석 문제 및 선정된 솔루션 방안을 포함하여 이를 분석 과제 정의서의 형태로 명시하는 후속작업을 시행하며 이는 프로젝트 계획의 입력물로 활용횐다.

2. 상향식 접근법(Bottom Up Approach)
한 의약제조사는 특허기간이 만료된 의약품 약 2천 종류의 데이터를 분석, 상호 결합하여 새로운 의약품을 개발하려고 시도하였다. 의약품 집합으로부터 두 개의 조합을 선택할 수 있는 방법은 백만 개 이상이기 때문에 이 회사는 새로운 결합의 효과성을 검정하기 위하여 다양한 기법을 적용하여 데이터를 분석하였다. 이런한 분석 사례는 절차가 규정된 하향식 문제해결 방식이 아니라 경험적인 과거 데이터를 무작정 결합하여 상향식으로 정보 혹은 지식을 얻고자 하는 새로운 분석 패러다임이라 할 수 있다.

여기에서는 전통적인 하향식 문제 해결 방식과 대비하여 기업에서 보유하고 있는 다양한 원천 데이터로부터 분석을 통하여 통찰력과 지식을 얻는 상향식 접근방법을 기술한다. 사향식 접근방법은 그림처럼 다양한 원천 데이터를 대상으로 분석을 수행하여 가치 잇는 문제를 도출하는 일련의 과정이다.

- 기존 하향식 접근법의 한계를 극복하기위한 분석 방법론
지금까지 가장 일반적으로 사용되고 있는 문제 해결 방식은 앞서 설명한 것과 같은 하향식의 놀리적인 단계별 접근법이다. 기존 접근 방법인 논리적인 단계별 접근법은 문제의 구조가 분영하고 문제를 해결하고 해결책을 도출하기위한 데이터가 분석가 및 의사결정자에게 주어져 있음을 가정하고 있기 때문에 솔루션 도출에는 유효하지만 새로운 문제의 탐색에는 한계가 있다. 따라서 기존의 논리적인 단계별 접근법에 기반한 문제해결 방식은 최근 복잡하고 다양한 환경에서 발생하는 문제에는 적합하지 않을 수 있다.

이를 해결하기 위새서 스탠포드 대학의 d.shool(Institute of Design at Stanford)은 디자인 사고(Design Thinking)접근법을 통해서 전동적인 분석적 사고를 극복하려고 한다. "이미 우리가 알고 있는 것" 즉 분석가의 문제에 대한 분석 접근법의 한계를 극복하기 위해서 현장 관찰과 감정이입, 즉 대상의 관점으로의 전환을 수행한다. 통상적인 관점에서는 분석적으로 사물을 인식하려는 'Why'를 갖오하지만, 이는 우리가 알고 있다고가정하는 것이기 때문에 문제와 맞지 않는 솔류션인 경우 오류가 발생할 소지가 있다. 그렇기 때문에, 답을 미리 내는 것이 아니라 사물을 있는 그대로 인식하는 'What' 관점에서 보아야 한다는 것이다. 객과적으로 존재하는 데이터 그 자체를 관찰하고 실제적으로 행동에 옮김으로써 대상을 좀 잘 이해하는 장식으로의 접근을 수행하는 것이다. 이와 같은 점을 고려하여 d.school 에서는 첫 단계로 감정이임(Empathize)을 강조하고 있다.

_______________________________________________________________________________________________

일반적으로 상향식 접근 방식의 데이터 분석은 비지도학습(Unsupervised Learning)방법에 의해 수행된다. 비지도학습은 데이터 분석의 목적이 명확히 정의된 형태의 특정 필드의 값을 구하는 것이 아니라 데이터 자체의 결합, 연관성, 유사성 등을 중심으로 데이터의 상태를 표현하는 것이다. 데이터 마이닝 기법을 예로들면, 장바구니 분석, 근집 분석, 기술 통계 및 프로파일링 등이 이에 속한다.
이와 반대로 명확한 목적하에 데이터분석을 실시하는 것은 지도학습(Supervised Learning)이라고하며 분류, 추측, 예측, 최적화를 통해 사용자의 주도 하에 분석을 실시하고 지식을 도축하는 것이 목적이다. 예를 들어서 그림에서 O와 X를 구분 짓게 하는 분류(Classification)는 지도학습에 해당되고, 인자들 간의 유사성을 바탕으로 수행하는 군집화(Clustering)는 비지도학습에 해당한다. 지도학습의 경우 결과로 도출되는 값에 대새서 사전에 인지하고 어떠한 데이터를 넣었을 때 어떠한 결과가 나올지를 예츨하는것이라면 비지도학습의 경우 목표값을 사전에 정의하지 않고 데이터 자체만을 가지고 그룹들을 도출함으로써 해석이 용이하지는 않지만 새로운 유형의 인사이트를 도출하기에 유용한 방식으로 활용할 수 있다.

__________________________________________________________________________________________________
통계적 분석에서는 인과관계 분석을 위해 가설 을 설정하고 이를 검정하기 위해 모집단으로부터 표본을 추출하고 그 표본을 이용한 가설검정을 실시하는 방식으로 문제를 해결하였다. 그러나 빅데이터 환경에서는 이와 같은 노리적인 인과관계 분석뿐만 아니라 상관과계 분석 또는 연관 분석을 통하여 다양한 문제 해결에 도움을 받을  수 있다. 즉, 인과관계(Know-why)로 부터 상관관계(Know-affinity)분석으로의 이동이 빅데이터 분석에서의 주요 변화라고 할 수 있다. 다양의 데이터 분석을 통해서 "왜" 그러한 일이 발생하는지 역으로 추적하면서 문제를 도출하거나 재정의 할 수 있는 것이 상향식 접근 방법이다.

- 시행착오를 통한 문제 해결
프로토타이핑(Prototyping)접근법은 사용자가 요구사항이나 데이터를 정확히 규정하기 어렵고 데이터 소스도 명확히 파악하기 어려운 상황에서 일단 분석을 시도해 보고 그 결과를 확인해 가면서 반복적으로 개선해 나가는 방법을 말한다. 하향식 접근방식은 문제가 정형화되어 있고 문제해결을 위한 데이터가 완벽하게 조직에 존재할 경우에 효과적이다. 이에 반하여, 프로토타이핑 방법론은 비록 완전하지는 못하다 해도 신속하게 해결책이나 모형을 제시함으로써 이를 바탕으로 문제를 좀 더 명확하게 인식하고 필요한 데이터를 식별하여 구체화할 수 있게 하는 유용한 상향식 접근 방식이다.

프로토타이핑 접근법의 기본적인 프로세스는 가설의 생성(Hypotheses), 디자인에 대한 실험(Design Experiments), 실제 환경에서의 테스트(Test), 테스트 결과에서의 통찰(Insight) 도출 및 가설 확인으로 구성된다. 학습이라는 목표를 가지고 잘 설계된 프로토타이핑을 지속하는 경우에, 실험이 가지고 있는 불명확성(Uncertainty)은 감소하고 의도했던 결과를 도출할 수 있는 성공 가능성은 높아진다. 한 번의 분석을 통해서 의도했던 겨로가가 나오기 쉽지 않은 동적인 환경에서 최대한 빨리 결과를 보여주고 해당 내용을 토대로 지속적인 반복을 수행하는 프로토타이핑 방식이 빅데이터 분석 환경에서는 보다 유용하다고 알려져 있다.

빅데이터 분석 환경에서 프로토타이핑의 필요성을 상세히 정리하면 다음과 같다.

- 문제에 대한 인식 수준: 문제 정의가 불명확하거나 이전에 접해보지 못한 새로운 문제일 경우 사용자 및 이해 관계자는 프로토타입을 이용하여 문제를 이해하고 이를 바탕으로 구체화하는데 도움을 받을 수 있다.

- 필요 데이터 준재 여부의 불확실성: 문제 해결을 위해 필요한 데이터의 집합이 모두 존재하지 않을 경우, 그 데이터의 수집을 어떻게 할 것인지 또는 그 데이터를 다른 데이터로 대체할 것인지 등에 대한 데이터 사용자와 분석가 간의 반복적이고 순환적인 협의 과정이 필요하다. 대체 불가능한 데이터가 존재하는지 사전에 확인한다면 불가능한 프로젝트를 수행하는 리스크를 사전에 방지할 수 있다.

- 데이터의 사용목적의 가변성: 데이터의 가치는 사전에 정해진 수집목적에 따라 확정되는 것이 아니고 그 가치가 지속적으로 변화할 수 있다. 따라서 조직에서 보유중인 데이터라 하더라도 기존의 데이터정의를 재검토하여 데이터의 사용목적과 범위를 확대할 수 있을 것이다. 예를 들면, 이동통신사에서 수집하는 사용자의 위치추적은 사용자의 호울을 효율적으로 처리하기 위한 원래의 목적으로부터, 사용자들의 즉정 시간에 많이 모이는 장소가 어디 인가를 분석하는 정보로 활용이 가능하다.

3. 분석과제 정의
다양한 방식을 통해서 도출한 분석과제를 분석과제 정의서 양식을 활용하여 보다 상세하게 정의한다.
분석과제 정의서는 향후 프로젝트 수행계획의입력물로 사용되기 때문에 프로젝트 수행하는 이해관계자가 프로젝트의 방향을 설정하고 성공여부를 판별할 수 있는 주요한 자료로서 명확하게 작성되어야 한다.

분석과제 정의서를 통해 분석별로 필요한 소스 데이터, 분석방법, 데이터 입수 및 분석의 난이도, 분석수행주기, 분석결과에 대한 검증 오너십, 상세 분석 과정 등을 정의한다. 분석 데이터 소스는 내.외부의 비구조적인 데이터와 소셜 미디어및 오픈 데이터까지 범위를 확장하여 고려하고 분석 방법 또한 상세하게 작성한다.






댓글 없음: