가. 확률의 정의
확률이란 '특정사건이 일어날 가능성의 척도'라고 정의할 수 있다. 통계적 실험을 실시할 때 나타날 수 있는 모든 결과들의 집합을 표본공간(sample space, Ω)이라 하고, 사건(event)이란 표본공간의 부분집합을 말한다. 사건 중에서 오직 한 개의 원소로만 이루어진 사건을 근원사건이라 한다.
나. 조건부 확률과 독립사건
사건 A가 일어났다는 가정하의 사건 B의 확률은 조건부 확률(conditional probability)
다. 확률변수와 확률분포
특정 사건에 대해 실수값을 갖는 변수를 정의하면, 특정사건이 일어날 확률은 그 변수가 특정값을 가질 확률로 표현할 수 있다. 이와 같이 특정값이 나타날 가능성의 확률적으로 주어지는 변수를 확률변수(random variable)라고 한다. 수학적으로 표현하면, 확률변수는 정의역(domain)이 표본 공간이고 치역(range)이 실수 값인 함수다. 확률변수에는 이산형 확률변수(discrete random variable)와 연속형 확률변수(continuous random variable)가 있다.
- 이산형 확률변수: 사건의 확률이 그 사건들이 속한 점들의 확률의 합으로 표현할 수 있는 확률변수를 말한다. 따라서 이산형 확률변수는 확률이 0 보다 큰 값을 갖는 점들로 확률을 표현할 수 있다, 즉 이와 같이 각 이산점에 있어서 확률의 크기를 표현하는 함수를 확률질량함수(probability mass function)라고 한다.
- 연속형 확률변수: 사건의 확률이 그 사건 위에서 어떤 0보다 큰 값을 갖는 함수의 면적으로 표현될 수 있는 확률변수를 말한다. 이 때, 이 함수 f(x)를 확률밀도함수(probability density function)라고 한다. 사건의 확률이 확률밀도함수의 면적으로 표현되므로 한 점에서의 확률은 0이되고, 0보다 큰값을 갖는 사건은 구간에서의 확률값이 된다.
- 결합확률분포(joint probability distribution): 두 확률변수 X, Y의 결합확률분포는 이산형인 경우에 다음과 같의 정의한다.
연속형인 경우에는 f(x,y) 라고 정의하며, 각각 결합확률질량함수(joint probability mass function)와 결합확률밀도함수(joint probability density function)라고 한다.
통계 분석에서 자료를 수집하고 그 수집된 자료로부터 어떤 정보를 얻고자 하는 경우에는 항상 수집된 자료가 특정한 확률분포를 따른다고 가정한다. 그 분포는 이산형 확률분포와 연속형 확률변수로 구분할 수 있다. 먼저 이산형 확률변수에는 베르누이 확률분포(Bernoulli distribution), 이항분포(binomial distibution), 기하분포(geometric distribution), 다항분포(multinomial distribution), 포아송분포(Poisson distibution) 등이 있다.
라. 확률변수의 기댓값과 분산
확률변수X의 기대값은 다음과 같이 정의된다.
댓글 없음:
댓글 쓰기