페이지

2018년 1월 14일 일요일

CHAPTER 1 소개(파이센 라이브러를 활요한 머신러닝)

머신러닝은 데이터에서 지식을 추출하는 작업.

1.1 왜 머신러닝인가?

직접 규칙 생성시 두가지 커다란 단점.(규칙 기반 전물가 시스템, 3세대 인공지능)

- 결정에 필요한 로직은 한 분야나 작업에 국한.(작업이 조금만 변경되더라도 전체 시스템을 다시 개발해야 할 수 있음)
- 규칙을 설계하려면 그 분야 전문가들이 내리른 결정 방식 참조

1.1.1 머신러닝으로 풀 수 있는 문제
지도학습 알고리즘 : 이미 알려진 사례를 바탕으로 일반화된 모델을 만들어 의사 결정 프로세스를 자동화하는 것

비지도학습 알고리즘 : 입력은 주어지지만 출력은 제공되니 않음.

샘플(sample) 또는 데이터포인트(data point): 하나의 개체 혹은 행
특성: 샘플의 속성

1.1.2 문제와 데이터 이해하기
머신러닝 프로세스에서 가장 중요한 과정은 사용할 데이터를 이해하고 그 데이터가 해결해야 할 문제가 어떤 관련이 있는지를 이해하는 일.

1.2 왜 파이썬인가?
범용 프로그램 언어로서 파이썬은 복잡한 그래픽 사용자 인터페이스(GUI)나 웹 서비스도 만들 수 있고 기존 시스템과 통합하기도 쉽다.


1.3 scikit-learn(http://scikit-learn.org/stable/user_guide.html  , http://sckikit-learn.org/stable/modules/classes.html)
오픈소스인 skikit-learn은 자유롭게 사용 및 배포
산업 현장이나 하계에도 널리 사용
많은 튜토리얼과 예제코드를 쉽게 접할 수 있음.

1.3.1 scikit-learn 설치

Anaconda (http://www.continuum.io/annaconda-overview)
대용량 데이터 처리, 예측 분석, 과학 계산용 파이썬 배포판

Enthought coanopy(http://www.ehthought.com/products/canopy/)
무료버젼에는 scujut-learn이 비 포함, 학생과 학위 수여가 되는 기관 종사자는 Enthought Canopy의 유료 버젼을 무료로 받을수 있음.

Python(x,y) (http://python-xy.github.io/)
원도우 환경을 위한 과학 계산용 무료 파이씬 배포판

1.4 필수 라이브러리와 도구들
scikit-learn: 파이썬 과학 라이브러리
NumPy, SciPy, matplotib

1.4.1 주피터 노트북

1.4.2 NumPy
NumPy(http://numpy.org/): 과학 계산을 필요한 패키지. 다차원 배열을 위한 기능과 선형 대수 연산과 푸리에 변환 같은 고수준 수학 함수와 유사 난수 생성기를 포함.

1.4.3 SciPy(http://www.scipy.org/scipylib)
SciPy는 과학 계산용 함수를 모아놓은 파이썬 패키지

댓글 없음: